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Oscillatory translational and rotational motions of small particles in viscous fluids are
studied for two cases: (i) circular disks and (ii) nearly spherical particles. For circular
disks, four motions are treated: broadside and edgewise oscillatory translations and
out-of-plane and in-plane oscillatory rotations. In each case the unsteady Stokes
equations are reduced to dual integral equations and solved exactly for all frequencies.
Streamline portraits of the flow fields are used to understand the evolution of the
velocity and pressure fields. The motions of nearly spherical particles are then studied
using the reciprocal theorem. Asymptotic formulae for the hydrodynamic resistance
tensors are derived and discussed.

1. Introduction
For many suspension flows the trajectories and orientations of the suspended

particles depend on the time-dependent forces and torques that act on the particles.
Classical results for transient (e.g. oscillatory) motions of spheres and cylinders in
viscous fluids are well known. Recently there has been work on translational motions
of more complicated, though axisymmetric, particles, such as spheroids, finite-length
cylinders, and dumbbells, in an effort to elucidate the relation between the particle
geometry and the hydrodynamic resistance. Here we take a more general view by
considering translational and rotational motions of two distinct geometries: a circular
disk and an arbitrarily shaped, though nearly spherical, particle.

Particle motions for the transient flows mentioned above are often treated within
the unsteady Stokes flow approximation which retains the local acceleration of the
fluid while neglecting the convective acceleration. In this low-Reynolds-number flow
limit, it is sufficient to consider independent Fourier modes of the time-dependent
motion. For a single oscillation frequency ω, the flow field and the corresponding
hydrodynamic resistance for a particle with characteristic dimension a, in a fluid
with kinematic viscosity ν, depend only on the dimensionless frequency parameter
λ2 = ωa2/ν and the detailed particle shape. Analytical results are available for a
sphere or a cylinder undergoing oscillatory translational or rotational motion (e.g.
Stokes 1851), but exact results at arbitrary λ2 for other geometries are few.

Lawrence & Weinbaum (1986, 1988) developed an exact solution for arbitrary
λ2 for the axisymmetric translation of a spheroid. Their analytical solution showed
that the time-dependent force on the oscillating particle consisted of the familiar
steady Stokes drag, the added mass, and the Basset history force, in addition to a new
memory term due to the particle’s non-spherical shape. Lawrence & Weinbaum (1988)
reported results for axisymmetric translational motions for spheroids with aspect
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ratios 0.1–10. These studies were extended by Pozrikidis who developed a singularity
solution method to investigate axial and transverse oscillations of prolate spheroids
(1989a) and a boundary integral representation to study axisymmetric oscillatory flow
past spheroids, dumbbell-shaped particles and biconcave disks (1989b). Loewenberg
(1993a, b, 1994a, b) used the boundary integral procedure to study the transverse
and axial oscillations of finite-length cylinders and spheroids. We also note that
Davis (1993b) studied the hydrodynamics of an oscillating screen viscometer in which
the oscillations of a periodic rectangular grid were analysed as were the broadside
oscillations of a thin annular disk. Rotational oscillations have received much less
attention. Series solutions for rotational motions of a spheroid were developed by
Hocquart (1976, 1977) but no results were reported.

Generally, unsteady Stokes flow problems arise in situations such as the calibration
of electroacoustic measurements (Loewenberg 1994c), as well as more well-known
problems on Brownian motion and swimming microorganisms. Some biological ap-
plications are mentioned by Vogel (1994). Also, the use of high-frequency torsional
oscillations of a circular disk as a device for measuring viscosity has a long history
(e.g. Faber 1995). In recent years a new engineering application has appeared to which
some of the unsteady viscous flow ideas apply (e.g. Bryzek, Peterson & McCulley
1994): silicon processing technology has been used to construct microelectromechan-
ical systems which include a variety of small mechanical elements such as gears,
levers, valves, and microactuators that operate in time-periodic or other transient
modes. The performance of such mechanisms, which are often less than 100µm in
size, may be significantly affected by viscous dissipation in the surrounding fluid. At
typical frequencies of operation, the fluid motion is often characterized by a Reynolds
number about 1, but may encompass a wide range of λ2. The effect on the mechanical
element, or particle, of nearby rigid boundaries is frequently important as are finite
Knudsen number effects owing to the mean free path of the fluid becoming compa-
rable to the geometric dimensions (e.g. Arkilic, Schmidt & Breuer 1995). These latter
effects are not considered in this paper, but in some cases can be treated within the
mathematical framework described in § 2. Also, the unsteady Stokes equation has the
same mathematical form as the Brinkman equation which describes steady motions
in a porous medium under certain circumstances.

As summarized above the flow fields and the hydrodynamic resistance on particles
in unsteady Stokes flows have been investigated primarily for spheres, cylinders and
spheroids of modest aspect ratios and for translational motions. For other particle
shapes, such as circular disks, some asymptotic results are available for both low and
high frequencies (§ 3 and Appendix B), but exact results at arbitrary λ2 are apparently
only available for edgewise oscillatory translation of a circular disk (Davis 1993a);
Lai’s (1973) results on broadside oscillations of a circular disk are in error as the
analysis begins by assuming incorrectly that the force is given by a formula equivalent
to that for a sphere.

Motivated by the circular shape of some of the microelectromechanical elements
discussed above, we study in §§ 2 and 3 and Appendix A time-periodic motions, and
the corresponding forces and torques, on circular disk-shaped particles. The analytical
development in § 2 and Appendix A gives simple formulae from which the velocity field
can be constructed for four representative motions. Section 3 presents the calculated
hydrodynamic resistance on an oscillating disk as well as detailed velocity fields due
to broadside translations and out-of-plane rotations of the circular disk. In § 4 the
case of nearly spherical particles undergoing oscillatory translations and rotations are
investigated and formulae for the force and torque at arbitrary λ2 are derived. These
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formulae complement other results available in the literature for specific shapes at
low or high λ2. Coupling of translational and rotational motions is also considered, as
is the hydrodynamic resistance experienced by a particle moving in a time-dependent
manner. In § 5 the asymptotic results derived for near-spherical particles are used
as a guide in writing down a composite expansion for the hydrodynamic resistance
on an oscillating disk. Comparison with the hydrodynamic resistance calculated in
§ 3 showed that the composite expansion is accurate when the disk motion does not
displace surrounding fluid.

2. Oscillatory motions of a circular disk
2.1. Governing equations and boundary conditions

Consider a circular disk of radius a oscillating with frequency ω in an unbounded
region filled with a fluid of viscosity µ, density ρ and kinematic viscosity ν =
µ/ρ. The disk motion may be an oscillatory translation with velocity U cosωt, an
oscillatory rotation with angular velocity Ω cosωt, or a combination of rotational and
translational oscillations. Non-dimensionalizing lengths by a, velocities by uc = |U |
or uc = |Ω|a, and time by ω−1 yields the dimensionless Navier–Stokes and continuity
equations

λ2 ∂u

∂t
+Ru · ∇u = −∇p+ ∇2u and ∇ · u = 0, (1)

where λ2 = ωa2/ν and the Reynolds number R = auc/ν. The dimensionless frequency
parameter λ2 characterizes the time scale for vorticity diffusion into the surrounding
fluid relative to the oscillation time scale.

The momentum equation may be linearized in the limit R � 1 (e.g. Batchelor 1967;
Landau & Lifshitz 1959). Provided the oscillations have an amplitude uc/ω that is
smaller than the particle radius a, i.e. λ2 � R, equation (1) may be simplified to the
unsteady Stokes equation

λ2 ∂u

∂t
= −∇p+ ∇2u. (2)

Owing to the linearity of (2), arbitrary motions may be studied by appropriate
Fourier superposition of the solution for individual frequencies. For a given frequency,
we write the velocity and pressure fields as u = Re(weit) and p = Re(Qeit), which
reduces (2) to

iλ2w = −∇Q+ ∇2w and ∇ · w = 0. (3)

Note that we have defined the dimensionless frequency λ2 to be real, whereas it is
common to find the parameter to be defined with an additional factor of i. Also, we
have written the complex time dependence as eit rather than e−it which affects some of
the signs in the intermediate results reported below. The solution for a disk oscillating
in an arbitrary manner can be decomposed into the four basic modes illustrated in
figure 1, and will be referred to as broadside translation, edgewise translation, in-plane
rotation and out-of-plane rotation.

Consistent with the linearization of the equations of motion, the coordinate system
may be chosen at the disk centre. For boundary conditions, the velocity is specified on
the disk and vanishes at large distances. Also, there exists a jump in the hydrodynamic
stresses across the disk.

In the next section we present an analytical solution, valid for arbitrary frequencies,
for out-of-plane rotational oscillations, which to our knowledge has not appeared
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Figure 1. Four fundamental modes of disk oscillation.

previously in the literature. An asymptotic expression for the corresponding torque at
low frequencies is derived in Appendix B. For the other three oscillation modes shown
in figure 1, asymptotic results for low- and high-frequency motions are available (see
§ 3 and Appendix B), and for edgewise oscillations an exact solution at arbitrary λ2 was
reported recently (Davis 1993a). Here the same procedure may be used to obtain exact
solutions for the velocity and pressure fields, as well as the hydrodynamic resistance,
for all four modes of motion. The analytical details for broadside and edgewise
translations and in-plane rotational oscillations of a circular disk are presented in
Appendix A.

2.2. Out-of-plane rotation of a disk

We use a cylindrical coordinate system with the origin fixed at the centre of the disk
and the z-axis normal to the disk surface. Consider out-of-plane rotation about the
x-axis with angular velocity ex cos t as depicted in figure 1(d). In the small oscillation
amplitude approximation the no-slip boundary condition is applied at z = 0 where
the velocity on the disk is w = (0, 0, rsin θ). We expect the fluid velocity to have the
same angular dependence as the boundary forcing and so choose

w = (vr(r, z) sin θ, vθ(r, z) cos θ, vz(r, z) sin θ) and Q = q(r, z) sin θ. (4)

It is convenient to rewrite the governing equations (3) in terms of vr + vθ, vr − vθ, vz ,
and q which leads to

iλ2(vr + vθ) = −1

r

∂

∂r
(rq) +

∂

∂r

(
1

r

∂

∂r
(r(vr + vθ))

)
+

(vr + vθ)

r2
+

∂2

∂z2
(vr + vθ), (5a)

iλ2(vr − vθ) = −r ∂
∂r

(q
r

)
+
∂

∂r

(
1

r

∂

∂r
(r(vr − vθ))

)
− 3(vr − vθ)

r2
+

∂2

∂z2
(vr − vθ), (5b)

iλ2vz = −∂q
∂z

+
1

r

∂

∂r

(
r
∂vz

∂r

)
− vz

r2
+
∂2vz

∂z2
, (5c)

(vr + vθ)

r
− 1

r

∂

∂r
(r(vr + vθ)) =

1

r

∂

∂r
(r(vr − vθ)) +

(vr − vθ)
r

+ 2
∂vz

∂z
. (5d)

The in-plane velocities vr and vθ have been combined in order to decouple the
momentum equations. The boundary conditions at z = 0 on and off the disk may be
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cast in a simple form using symmetry properties of the flow:

(vr + vθ) = 0, (vr − vθ) = 0; r < 1 : vz = r; r > 1 : q = 0. (6)

Next we take Hankel transforms of the governing equations and use the notation

V (k, z) =Hn{v} =

∫ ∞
0

rv(r, z) Jn(kr) dr, (7a)

v(r, z) =H−1
n {V } =

∫ ∞
0

kV (k, z) Jn(kr) dk. (7b)

The transformed governing equations are

`2H0{vr + vθ} = −kH1{q}+
d2

dz2
H0{vr + vθ}, (8a)

`2H2{vr − vθ} = kH1{q}+
d2

dz2
H2{vr − vθ}, (8b)

`2H1{vz} = − d

dz
H1{q}+

d2

dz2
H1{vz}, (8c)

kH0{vr + vθ} = kH2{vr − vθ}+ 2
d

dz
H1{vz}, (8d)

where `2 = k2 + iλ2. Solving these equations, using the first boundary condition in
(6), and taking inverse Hankel transforms yields the solutions for the velocity and
pressure fields (z > 0):

vr(r, z) =
1

2

∫ ∞
0

kA(k)
(
e−`z − e−kz

)
[J0(kr)− J2(kr)] dk, (9a)

vθ(r, z) =
1

2

∫ ∞
0

kA(k)
(
e−`z − e−kz

)
[J0(kr) + J2(kr)] dk, (9b)

vz(r, z) =

∫ ∞
0

kA(k)

(
e−kz − k

`
e−`z

)
J1(kr) dk, (9c)

q(r, z) = iλ2

∫ ∞
0

A(k)J1(kr)e
−kz dk, (9d)

where the positive square root is taken for `. The unknown function A(k) is determined
by the on- and off-disk boundary conditions (6) and so satisfies the dual integral
equations ∫ ∞

0

kA(k)

(
1− k

`

)
J1(kr) dk = r, r < 1, (10a)∫ ∞

0

A(k)J1(kr) dk = 0, r > 1. (10b)

These integral equations are solved using Tranter’s method (Tranter 1966; see also
Tanzosh & Stone 1995). We take A(k) to have the form

A(k) = k1−β
∞∑
m=0

amJ1+2m+β(k), (11)

which automatically satisfies the integral condition for r > 1. Then, following Tranter
(1966) it can be shown that the coefficients {am} satisfy a linear system of equations
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derived from the integral condition for r < 1:

∞∑
m=0

am

∫ ∞
0

k2−2β

(
1− k

`

)
J1+2m+β(k)J1+2n+β(k)dk =

δ0n

2βΓ (2 + β)
, n = 0, 1, · · · . (12)

Here β must be chosen to ensure that the integrals are convergent but otherwise
the numerical results for the {am}, provided a sufficient number of terms in the
infinite series are retained in the calculation, are insensitive to the precise value of
β used. We have set β = 1/2 to capture the behaviour of the stress singularity
characteristic of the Stokes equation at the disk edge (e.g. Vedensky & Ungarish
1994). The coefficients {am} are obtained by solving the linear system (12) using a
standard IMSL routine (DLSACG), where the elements in the matrix are calculated
using a quadrature scheme developed by Lucas (1995) for integrals involving products
of Bessel functions.

The hydrodynamic torque about the axis of rotation Re
(
µa3ΩLeiωt

)
is calculated

by integrating the surface stress distribution over the disk surface:

L = −2πiλ2

∫ ∞
0

k−1A(k)J2(k) dk = −4(2π)1/2

3
iλ2a0. (13)

Note that by choosing β = 1/2 only a0 is required to calculate the hydrodynamic
resistance. Terms in the series decay sufficiently rapidly to yield O(10−4) accuracy in
a0 when only the first five terms in the series (11) are retained. For typical calculations
reported below, ten terms in the series are retained.

3. Results for oscillatory disk motions
Having outlined the analytical approach to the problem, we now proceed to

summarize the principal results for the hydrodynamic resistance as well as the detailed
velocity field due to an oscillating disk. In § 3.1 we present the hydrodynamic resistance
along with a discussion of its behaviour in the limit of low- and high-frequency
oscillations. In § 3.2 we present velocity fields for broadside translation and out-
of-plane rotation in the case that fluid inertia is of comparable importance with
viscous effects (λ2 = 1). We will see that the time evolution of the velocity fields
can be understood by considering the combined effects of a vorticity boundary
layer near the disk and a point force- or stresslet-driven potential flow far from the
disk.

3.1. Hydrodynamic force and torque

Hydrodynamic resistance on a body undergoing oscillatory motions can be written
as a component that varies in phase with the body motion and a component π/2 out
of phase with the body motion; the out-of-phase component does not contribute to
energy dissipation. Figures 2 and 3 present, respectively, the non-dimensional in-phase
and out-of-phase components of the hydrodynamic resistance for all four modes of
disk oscillation. The dimensionless complex numbers F and L are, respectively, related
to the dimensional force and torque on the disk by Re(µaUFeiωt) and Re(µa3ΩLeiωt).
In figure 2 the results have been plotted as the difference between the in-phase
hydrodynamic resistance and the Stokes resistance (FStokes and LStokes corresponding
to λ = 0), normalized with respect to the Stokes resistance. In figure 3, the out-of-
phase resistances are also normalized with respect to the corresponding Stokes flow
values.
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Figure 2. In-phase component of the non-dimensional hydrodynamic resistance (force F and torque
L) calculated relative to the corresponding Stokes flow resistance (FStokes and LStokes) for each of the
four motions shown in figure 1.

Broadside translation

Edgewise translation

In-plane
rotation

Out-of-plane
rotation

103

102

101

100

10–1

10–2

10–2 10010–1 101 102 103 104

k2

Im
(F

/F
St

ok
es

),
Im

(L
/L

St
ok

es
)

Figure 3. Out-of-phase component of the non-dimensional hydrodynamic resistance, normalized
with respect to the Stokes resistance, for each of the four motions shown in figure 1.

In figure 2 we observe that the in-phase component of hydrodynamic resistance
increases linearly with λ for all cases except for rotational oscillations at low frequen-
cies, where it increases quadratically with λ. In contrast, the out-of-phase component
of hydrodynamic resistance shown in figure 3 has a more complicated dependence on
frequency. At low frequencies, a disk executing translational oscillations experiences a
resistance that increases linearly with λ while a disk executing rotational oscillations
experiences a resistance that increases quadratically with λ. At high frequencies, a
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Motion Force/Torque

(a) broadside translation F = −16

[
1 +

8

3π
eiπ/4λ+ O(λ2)

]
(b) edgewise translation F = −32

3

[
1 +

16

9π
eiπ/4λ+ O(λ2)

]
(c) in-plane rotation L = −32

3

[
1 +

1

5
iλ2 + O(λ3)

]
(d) out-of-plane rotation L = −32

3

[
1 +

3

10
iλ2 + O(λ3)

]
Table 1. Low-frequency asymptotic expressions for the force and torque on an oscillating disk.
References: (a), (b) Williams (1966); (c) Kanwal (1970) – note that the sign of the low-frequency
correction given by Kanwal is incorrect (see Appendix B); (d) Appendix B.

Motion Force/Torque

(a) broadside translation F = −16

[
iλ2

6
+ (1.32ei0.27πλ)∗ + O(1)

]
(b) edgewise translation F = −32

3

[
3π

16
eiπ/4λ+ O(1)

]
(c) in-plane rotation L = −32

3

[
3π

32
eiπ/4λ+ O(1)

]
(d) out-of-plane rotation L = −32

3

[
iλ2

30
+ (0.43ei0.27πλ)∗ + O(1)

]
Table 2. High-frequency asymptotic expressions. ∗ denotes values determined numerically from the

results in figures 2 and 3.

disk that does not displace fluid as it oscillates experiences a resistance that increases
linearly with λ, while a disk that displaces fluid as it oscillates experiences a resistance
that increases quadratically with λ.

To discuss the numerical results in more detail we summarize in tables 1 and 2
the low- and high-frequency asymptotic estimates for the force and torque on an
oscillating disk. All of the low-frequency asymptotic expressions, except the O(λ2)
result for the out-of-plane rotary oscillation (see Appendix B for the detailed calcu-
lation), have appeared previously. The asymptotic expressions (a) and (b) in table 1
are specializations of a general formula for the dimensionless force Re(F eit) on an
arbitrarily shaped body executing low-frequency translational oscillations (Williams
1966):

F = RStokes ·
[
d +

RStokes · d
6π

λeiπ/4

]
+ O(λ2), (14)

where RStokes is the resistance tensor for Stokes flow (λ = 0) and d is a unit vector in
the translation direction. Also included in table 2 and indicated by ∗ are numerically
determined O(λ) corrections to well-known potential flow results (Lamb 1932).

We have compared the asymptotic formulae with the detailed numerical results and
the agreement is very good for low frequencies. Not surprisingly the error is largest at
intermediate frequencies. For disk motions which do not displace fluid, the error can
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be reduced by a composite formula which incorporates both low- and high-frequency
asymptotic results, a topic we will consider further in § 5.

To gain some insight into why hydrodynamic resistance on an oscillating disk
depends on frequency in the manner depicted in figures 2 and 3, we will identify
the dominant contributions to the resistance in both the low- and high-frequency
limits. At low frequencies the hydrodynamic resistance experienced by the disk is
the Stokes flow resistance plus a small inertial correction. Since the disk acceleration
is small (λ2 � 1), inertial effects become significant only when we consider motion
throughout a large fluid volume, which, from inspection of the unsteady Stokes
equation, corresponds to motion on a length scale O(aλ−1), a length scale much larger
than the disk radius. On that length scale, a disk in translational oscillation appears
approximately as an oscillating point force, which gives rise to an O(λ) pressure-driven
flow, thereby an O(λ) correction to the dimensionless Stokes drag. In contrast, on the
long O(aλ−1) length scale, a disk in rotational oscillation appears as a point torque
and a point source of stress. A point torque does not produce a pressure-driven flow
but a point source of stress, or a stresslet, gives rise to a weaker, O(λ2) pressure-driven
flow (e.g. Hocquart & Hinch 1983), thereby giving rise to an O(λ2) correction to the
dimensionless Stokes torque.

For disk oscillations at high frequencies, λ2 � 1, almost all of the fluid responds
in an inviscid manner except for a thin boundary layer which is O(aλ−1) in thickness
adjacent to the disk surface. When the disk motion does not displace fluid, as for
edgewise oscillations or in-plane rotary oscillations, the dominant hydrodynamic
resistance is due to this Stokes boundary layer. As the oscillation frequency increases,
the boundary layer dynamics corresponds closer and closer to that described by
translational or rotational oscillations of an infinite plane (Stokes’s first problem).
When the disk motion involves displacement of surrounding fluid, as for broadside
oscillations and out-of-plane rotations, the predominant hydrodynamic resistance at
high frequency is the O(λ2) added mass term, which is π/2 out of phase with the disk
motion, and hence does not contribute to energy dissipation. The O(λ) correction
to the resistance includes a π/4 out-of-phase viscous contribution from the Stokes
boundary layer on the disk surface, as well as a contribution, due to the viscous
boundary layer at the disk surface, which produces a modification of the pressure
field from the inviscid pressure solution (Batchelor 1967). This correction is evident
in figure 2, where the in-phase force and torque at high frequencies exhibit an O(λ)
dependence.

Lastly, we note that the hydrodynamic resistance on an oscillating oblate spheroid,
based on viscous boundary layer theory, is singular in the limit of the oblate spheroid
approaching a disk shape (Loewenberg 1993a) since in that limit the spheroid thick-
ness becomes smaller than the boundary layer thickness; i.e. the boundary layer
approximation breaks down. Our results for the hydrodynamic resistance on an os-
cillating disk of negligibly small thickness can then be used to yield a first-order
estimate of the hydrodynamic resistance of a thin spheroid.

3.2. Evolution of the fluid velocity fields

There has been much recent interest in the structure of velocity fields associated with
small-amplitude oscillatory motions. The adaptation of the boundary integral method
from Stokes flow to unsteady Stokes flow has enabled researchers to study a regime
of behaviour previously unamenable to detailed analysis, i.e. the regime in which
fluid inertia and viscous stresses are equally important. Pozrikidis (1989b) calculated
streamlines associated with translational oscillations of axisymmetric bodies while
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Loewenberg (1993a, b, 1994a) calculated streamlines for cylinders in axisymmetric and
transverse translational oscillations. Both authors have described the time evolution
of the velocity field in terms of a cycle of nucleation, growth and disappearance of
viscous eddies. This cycle is not found in either Stokes flows or potential flows and
constitutes a unique and robust feature of oscillatory flows at intermediate frequencies.
An analytical investigation of features of the eddy formation process is given by Smith
(1995).

Not surprisingly, the cycle can also be observed in oscillatory flow of a disk in
broadside oscillation or out-of-plane rotational oscillation. Figures 4 and 5 present
calculated velocity fields for these two flows at dimensionless frequency λ2 = 1. A
perusal of these figures shows that the streamline patterns are very different from
either the Stokes velocity fields, which correspond to low-frequency oscillations in
which the fluid has sufficient time to viscously adjust to the disk motion and therefore
always follows the motion of the disk, or the potential flow fields, which correspond
to high-frequency oscillations in which fluid acceleration is the dominant effect and
the fluid far from the disk always moves in the direction opposite that of the disk
motion.

Before we go on to discuss particulars of figures 4 and 5, we note that the results
are presented in the laboratory frame, where the particle is in motion and fluid far
away is at rest, while previous studies have presented the calculated streamlines in the
particle frame, where the particle is at rest and the fluid far away is oscillating. We
have switched the reference frame because the viscous eddy evolution cycle takes on a
much simpler form in the reference frame used here, from which it is straightforward
to deduce the mechanism that gives rise to these eddies. Also, previous authors
(Loewenberg 1993a, b; 1994a, b; Pozrikidis 1989a, b) have presented surface stress
distributions at different frequencies. These distributions can also be calculated using
the analytical solution developed in § 2, but will not be presented here as the results
will differ only to a small degree from those calculated previously.

Now we begin a more detailed examination of the velocity fields. Figure 4 presents
instantaneous streamline patterns over a half-cycle of broadside oscillation. The disk is
aligned with the vertical r-axis and oscillates horizontally along the z-axis. Its velocity
varies sinusoidally in time. Following our original assumption of small-amplitude
oscillation, its centre of mass position is taken to be fixed at the origin. Since the flow
is axisymmetric, we have calculated the values of streamlines analytically and they
are labelled accordingly. Note the scales are adjusted to give the best illustration of
the flow and hence are different at different times in the cycle. Figure 5 presents the
analogous results for a disk in out-of-plane rotational oscillation. Note that the actual
flow associated with a disk in out-of-plane rotational oscillation is three-dimensional.
The velocity field is two-dimensional only in the normal plane, where the swirl
component of the velocity is zero. Here we cannot obtain an analytical expression for
the streamline values, but the velocity decays as O(1/r3) away from the disk.

Despite their apparent complexity, figures 4 and 5 look quite alike. Both seem to
possess a two-part structure: an outer region far from the disk with a dipole-like
velocity field pattern and an inner region near the disk which is composed of one or
two eddies during most of the oscillation cycle.

We identify the inner region as a region of finite vorticity, in which, over an
oscillation cycle, vorticities of opposite signs are alternately released. The vorticities
diffuse outward and cancel each other, so that outside this region, the flow is essentially
irrotational. In figures 4(f–h) or 5(e–h), one observes the cancellation as an older
viscous eddy of one circulation is squeezed smaller and smaller by a growing eddy
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Figure 4. Velocity field for a disk in broadside oscillation for λ2 = 1. Values of the stream function
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Figure 5. Velocity field for a disk in out-of-plane oscillation about the x-axis for λ2 = 1. The flow
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and 0.96π.
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of the opposite circulation. The process is much less obvious in the particle reference
frame, where the viscous eddy appears to grow, detach from the disk, and then balloon
out rapidly over a half-cycle.

We identify the outer region as the potential flow region. Here the disk motion
appears as either an an oscillatory point force when the disk is in broadside translation,
or as an oscillatory point source of stress when the disk is in out-of-plane rotational
motion. (Note, though it is true that in the far field the rotating disk also appears
to be a point torque, the point torque does not drive a flow in the far field.) Since
the flow is not perfectly irrotational, the oscillation cycle of the point force or point
source of stress seen by the far field does not correspond instantaneously to the
oscillation cycle of the disk. When the disk reverses direction, the far-field flow does
not immediately reverse so as to be moving in the direction opposite to that of the disk
(as required by potential theory), but instead lags behind the oscillation cycle of the
disk by some phase factor Φ. The phase factor Φ, which can be understood as the time
required for the information that the disk has switched direction to diffuse through
the finite-vorticity region and reach the potential flow region, increases linearly with
the thickness of the boundary layer.

Alternatively, the phase lag can be understood by referring back to Stokes’s (1851)
work on an oscillating sphere or cylinder. By calculating the detailed velocity fields,
Stokes showed that, for a sphere or a cylinder in high-frequency oscillation, the far
field behaves as if the sphere or the cylinder has its radius increased by δ, where δ
is the thickness of the vorticity boundary layer. Moreover, the effective centre of the
sphere or cylinder lags behind the actual centre by δ (Batchelor 1967).

For broadside oscillation of a disk, we have compared values of the phase lag
Φ deduced from the calculated streamlines with values computed by taking the
hydrodynamic resistance experienced by an oscillatory sphere as the value of the
point force singularity driving the far-field flow. The point force solution is

wpt−force = −iFU ·
[

1

4πλ2

(
I

r3
− 3rr

r5

)
− (I∇2 − ∇∇)

e−λr/
√

2e−iλr/
√

2

4πλ2r

]
(15)

where r is distance from origin. Since the second term in brackets decays exponentially
the far-field velocity field is determined by the first term, which corresponds to the
potential flow solution due to an oscillating point force −F(λ)U . Recalling that the
non-dimensional velocity field is given by u = Re(weit) and writing the complex force
function as F(λ) = −|F |eiΦ (note: 0 6 Φ < π/2), we see the far-field flow has the
structure

upt−force = −Re(ei(t−(π/2−Φ)))
|F |U
4πλ2

·
(
I

r3
− 3rr

r5

)
as |r| → ∞, (16)

where we have written the equation explicitly displaying a negative sign to be consis-
tent with the far-field potential flow which moves, along z = 0, in a direction opposite
to the disk. Therefore, there is a phase lag π/2−Φ between the imposed disk motion
and the far-field motion. Here Φ can be evaluated approximately using the results for
a spherical particle

Φsphere = tan−1{λ(1 +
√

2λ/9)/(
√

2 + λ)}. (17)

The above analytic formula gives good agreement with values of phase lag deduced
from numerical calculations. Also, the agreement improves slightly if we use asymp-
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totic expressions in tables 1 and 2 for the hydrodynamic resistance experienced by
the disk instead of the sphere.

We have calculated streamlines for different oscillation frequencies and observe
essentially the same cycle of streamline evolution. As expected, the thickness of the
finite-vorticity region, and hence the far-field phase lag Φ, decrease with increasing
frequency. The other two modes of disk motion illustrated in figure 1 do not displace
fluid and for these modes the structure of the associated velocity field can be deduced
easily.

Finally, we note that our analysis of disk motion has been based on the assumption
that flow separation does not occur. In general, for oscillatory flow past a solid body,
flow separation occurs when the oscillation amplitude is comparable to the radius of
curvature of the disk edge (Batchelor 1967 p. 353). Thus, if we consider our results to
be an approximate model of a real disk-shaped particle with rounded edges, we expect
the results reported here to be valid for sufficiently small-amplitude oscillations.

4. Oscillatory motions of a nearly spherical particle
4.1. Preliminary remarks

We now turn our attention from oscillatory motions of a disk to oscillatory motions
of a nearly spherical particle. The well-studied Stokes flow limit (λ = 0) is discussed
by Happel & Brenner (1965). Approximate analytic expressions for the hydrodynamic
resistance on the oscillating near sphere will be derived via the reciprocal theorem and
compared with available numerical results. These expressions represent generalizations
of the well known applications of the reciprocal theorem in Stokes flow problems.

Our work is motivated by recent results concerning the translation of symmetric
bodies. Lawrence & Weinbaum (1988) obtained an exact expression for the hydrody-
namic resistance experienced by a spheroid in axisymmetric translational oscillation.
These authors noted that, provided the spheroid aspect ratio is between 0.1 and 10,
the force Re(µ|U |aF eiωt) on a spheroid with minor axis radius a and translating with
velocity U cosωt is well approximated by the following composite formula for the
low- and high-frequency asymptotic expansions:

F ≈
(
RStokes + eiπ/4λB∞ + iλ2Ma +

eiπ/4λ

1 + eiπ/4λ
(R1 − B∞)

)
·U , (18)

where λ2 = ωa2/ν. In (18), RStokes is the Stokes resistance tensor for the spheroid, B∞
is the Basset tensor, R1 is the first-order correction to the Stokes resistance tensor
at low-frequency, and Ma is the added mass tensor. The second and third terms
on the right-hand side represent the high-frequency asymptotic limit. The last term
represents a correction to the expansion so that the formula tends to the correct
low-frequency asymptotic expansion. For a sphere, B∞ = R1, so that the last term
vanishes, and the force has a quadratic dependence on λ. Lawrence & Weinbaum’s
observation, i.e. equation (18), has been confirmed and extended by numerical studies
(Pozrikidis 1989a, b, Loewenberg 1993a, b, 1994a, b), which demonstrate that (18)
works for transversely oscillating spheroids, as well as finite cylinders undergoing
translational oscillations, provided the aspect ratio remains moderate. In these cases,
the difference between B∞ and R1 has been found to be small regardless of the de-
tailed particle geometry or type of translational oscillation. Section 4.2 provides some
theoretical justification for this observation by considering translational motions of a
slightly non-spherical particle.
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Figure 6. A sphere inscribed in a nearly spherical body.

The analysis in § 4.2 can be easily generalized to arbitrary oscillatory motions,
provided that the unsteady Stokes flow approximation holds. In that case, we expect
a particle translating with velocity Re(U oe

it) and rotating with angular velocity
Re(Ωoe

it) to experience a hydrodynamic force Re(F eit) and a hydrodynamic torque
Re(Leit) where F and L are linearly related to U o and Ωo:(

F
L

)
=

(
A B
C D

)
·
(
U o

Ωo

)
. (19)

The second-rank tensors A, B , C and D depend on the dimensionless oscillation
frequency λ2 and the detailed particle geometry. It follows from the linearity of the
unsteady Stokes equations that A and D are symmetric tensors and B = CT. Section 4.2
ascertains the form of A; § 4.3 then determines the hydrodynamic torque resistance
tensor D and the coupling tensor C . From results for hydrodynamic resistance on
nearly spherical bodies in Stokes flow (Rallison 1978), we expect, and shall indeed
find that, in the limit of small deviations from a sphere, the first-order effects of
shape variation depend only on the second spherical harmonic component, i.e. for
the hydrodynamic resistance, all nearly spherical bodies can be approximated to first-
order in their deviations from a sphere by equivalent ellipsoids. One consequence of
this observation is that the coupling between rotation and translation is a small effect
and does not show up as a first-order correction.

Finally, § 4.4 contains approximate expressions for the hydrodynamic resistance on
a nearly spherical body in arbitrary time-dependent motion, which are derived via
standard Laplace transform ideas from formulae obtained in §§ 4.2–4.3. Throughout
§ 4 we shall take the characteristic length scale to be the radius of an equal-volume
sphere, the characteristic time scale to be the inverse of the oscillation frequency and
the characteristic velocity scale to be the maximum oscillation velocity.
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4.2. Translational oscillatory motions of a nearly spherical particle

In this subsection, we will relate, via the reciprocal theorem, the hydrodynamic
resistance experienced by an oscillating nearly spherical particle to the hydrodynamic
resistance experienced by an equal-volume sphere oscillating at the same frequency.
Consider a nearly spherical body in translational oscillation with velocity U oe

it. In
spherical coordinates, the surface of the nearly spherical body is r = 1 + εf(θ, φ)
with ε � 1, where r has already been non-dimensionalized by the radius of an
equal-volume sphere. At O(ε), this choice of length scale implies that∫

Ŝ

fdS = 0 (20)

where Ŝ is the surface of the equivalent-volume sphere. We will also fix the origin
at the centre of mass of the nearly spherical body. This choice of coordinate system
implies that ∫

Ŝ

nfdS = 0 (21)

and leads to a particularly simple form of the hydrodynamic resistance tensor for the
nearly spherical body.

The problem is illustrated in figure 6. Ŝ denotes the surface of the sphere and S
denotes the surface of the nearly spherical particle. As conventional, the unit normal
points into the fluid. It is convenient to choose the sphere centre to coincide with
the centre of mass of the nearly spherical particle. Since they have the same volume,
this choice of relative placement means parts of the nearly spherical particle extend
beyond the sphere. We have shaded these volumes in stripes and labelled them V−i ,
i = 1 . . . N, where N is the total number of bumps the nearly spherical particle has
over the surface of an equal-volume sphere. Similarly, we label the parts of the sphere
surface that bound volumes V−i as Ŝ−i and label the parts of the nearly spherical
particle surface that bound V−i as S−i . In the same spirit, parts of the sphere which
extend beyond the nearly spherical particle are labelled as V+

i , bounded by surfaces

Ŝ+
i and S+

i .
To write out the governing equations for the sphere and the nearly spherical

particle, we let Re(ueit) and Re(peit) denote the non-dimensional velocity and pressure
fields due to oscillation of the nearly spherical body (although this notation is slightly
different than that used in § 2, the presentation here is self-contained so that there
should be no confusion). Also, let Re(ûeit) and Re(p̂eit) denote the non-dimensional
velocity and pressure fields due to the oscillation of a sphere of equal volume. We
then have

iλ2u = ∇ · T , ∇ · u = 0 with u|S = U o (22a)

iλ2û = ∇ · T̂ , ∇ · û = 0 with û|Ŝ = Û o, (22b)

where T and T̂ are stress tensors. The fluid at infinity is quiescent for both flows.
Applying the reciprocal theorem, equations (22a) and (22b) may be rearranged to

give

0 = ∇ · (T · û)− ∇ · (T̂ · u). (23)

Now let V1 denote the volume of fluid outside the sphere and let V2 denote the
volume of fluid outside the nearly spherical particle. Clearly, since the particles have
equal volumes, V1 = V2 = V2 + V− − V+ where V− =

∑N
i=1 V

−
i and V+ =

∑N
i=1 V

+
i ,
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so that integrating over the fluid volume outside the sphere, (23) becomes

0 =

∫
V2+(V−−V+)

∇ · (T · û)dV −
∫
V1

∇ · (T̂ · u)dV . (24)

We then break the first integral into three parts and apply the divergence theorem to
the volume integrals over V1 and V2. Keeping in mind that n points into the fluid, we
obtain

0 = −
∫
S

n · T · ûdS +

∫
V−
∇ · (T · û)dV −

∫
V+

∇ · (T · û)dV +

∫
Ŝ

n · T̂ · udS (25)

where
∫
V−

and
∫
V+ are taken to represent the sum of the volume integrals over each

of the volumes V+
i or V−i . As usual in Stokes flow calculations, the velocity and

stress distributions for both flows decay sufficiently rapidly for the surface integrals
at infinity to vanish. Considering the second and third terms together, we first note
that the integrand can be rewritten as iλ2u · û by using the fact that within each V−i
the particle velocity is that of a solid body translation U o while within each V+

i the

sphere velocity is that of a solid body translation Û o. We then have∫
V−
∇ · (T · û)dV −

∫
V+

∇ · (T · û)dV = iλ2

(∫
V−
ûdV ·U o −

∫
V+

udV · Û o

)
. (26)

We next make use of the fact that the particle is nearly spherical and approximate the
volume integrals as surface integrals over regions on the equal-volume sphere which
bound each of the volumes in V+ or V−, whereupon we arrive at∫

V−
∇· (T · û)dV −

∫
V+

∇· (T · û)dV = iλ2U o · Û o

(
N∑
i=1

∫
Ŝ−i

εfdS +

N∑
i=1

∫
Ŝ+
i

εfdS

)
. (27)

Note that f < 0 for V+, therefore the (defined as positive only) volume element is
approximated as −εfdS. The quantity in the parentheses above is simply the surface
integral of f over an unit sphere, which is zero by (21). Therefore the reciprocal relation
between the hydrodynamic resistance on a nearly spherical particle in translational
oscillation and that on an equal-volume sphere in translational oscillation has the
same form as the Stokes flow result:∫

S

n · T · ûdS =

∫
Ŝ

n · T̂ · udS. (28)

To evaluate (28), we begin by noting that, on the nearly spherical surface S , the
velocity field associated with the equal-volume sphere in translational oscillation is
a uniform solid body translation over S+

i , as points on S+
i are inside the sphere.

On the other hand, the velocity field due to the equal-volume sphere over S−i is
ûo + εf∂û/∂r|r=1 + O(ε2) as these regions lie outside the sphere.

The velocity field due to the nearly spherical body evaluated on the spherical
surface is slightly more complicated. First we write the velocity field as a regular
perturbation expansion in ε:

u = u(0) + εu(1) + O(ε2). (29)

The zeroth-order term corresponds to the velocity field due to a sphere translating
with velocity U o in unsteady Stokes flow. A regular perturbation expansion about
the boundary condition on the particle surface then yields u(1)|r=1 = −εf∂u(0)/∂r|r=1.

Putting these results together, the velocity field evaluated on the surface Ŝ of the
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equivalent-volume sphere is

u|Ŝ = U o over Ŝ−i , (30a)

u|Ŝ = U o − εf
∂u(0)

∂r

∣∣∣∣
r=1

+ O(ε2) over Ŝ+
i . (30b)

After substituting these expressions into (28), we use the fact that corrections to
the velocity field are O(ε) and approximate surface integrals over the nearly spherical
particle surface as those over a unit sphere, an approximation that only introduces
O(ε2) errors. Keeping in mind that(∫

S

n · TdS

)
· Û o = F · Û o and

(∫
Ŝ

n · T̂dS

)
·U o = F̂ ·U o, (31)

where Re(F eit) and Re(F̂ eit) are the non-dimensional hydrodynamic resistance expe-
rienced, respectively, by the near sphere and the equal-volume sphere, we rewrite (28)
as

F ·Û o = F̂ ·U o−
N∑
i=1

∫
Ŝ−i

n ·T (0) ·
(
εf
∂û

∂r

∣∣∣∣
r=1

)
dS−

N∑
i=1

∫
Ŝ+
i

n · T̂ ·
(
εf
∂u(0)

∂r

∣∣∣∣
r=1

)
dS. (32)

Note that we have replaced T and u in the O(ε) surface integrals by T (0) and u(0).
Finally, we use well-known results for a sphere in translational oscillation to evaluate
the surface stress and the radial velocity gradient. If the oscillation velocity is U ∗ we
have

n · T ∗|Ŝ = − 1
2

[
3(eiπ/4λ+ 1)I + iλ2nn

]
·U ∗, (33a)

∂u∗

∂r

∣∣∣∣
Ŝ

= − 3
2
(eiπ/4λ+ 1)(I − nn) ·U ∗. (33b)

In (32), the relations (33) are used for both T̂ , ∂û/∂r as well as T (0), ∂u(0)/∂r. Also

recall that the hydrodynamic resistance F̂ experienced by an oscillating sphere is
given by

F̂ = −6π

(
1 + eiπ/4λ+

iλ2

9

)
Û o. (34)

Using expressions (33) and (34) as well as the fact that Û o is an arbitrary vector, the
hydrodynamic resistance on a nearly spherical particle in translational oscillation is
given by

F = −
[
6π

(
1 + eiπ/4λ+

iλ2

9

)
I − 9(eiπ/4λ+ 1)2ε

4

∫
S

fnndS + O(ε2)

]
·U o. (35)

Note that the first term is the resistance on the equal-volume sphere while the
second term is a correction due to shape deviations. Both terms are quadratic in λ,
which implies that the difference in the O(λ) coefficient for the force at low and high
frequencies is at most an O(ε2) effect, i.e. R1 − B∞ = O(ε2), and so helps to explain
why Lawrence & Weinbaum’s (1988) composite formula (18) has been found to work
well for translational oscillations of a variety of body shapes, not simply spheroids.

For an oblate particle in axisymmetric translation, equation (35) agrees to O(ε) with
Lawrence & Weinbaum’s (1986) formula. Note that since this flow is axisymmetric,
Lawrence & Weinbaum were able to obtain an O(ε2) formula by solving for the
detailed velocity and pressure fields with a stream function formulation. For a prolate
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Figure 7. Magnitude and phase of the hydrodynamic resistance on a prolate spheroid in transverse
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spheroid aligned with the y-axis in translational oscillation and an oblate spheroid in
transverse translational oscillation, (35) reduces to Kim & Karrila’s (1991) result for
Stokes flow (λ = 0) as well as simplifying to Lamb’s (1932) result for inviscid flow
(λ→∞).

We have also compared the analytical result (35) with numerically calculated
values of the hydrodynamic resistance experienced by a prolate spheroid in transverse
oscillation (Pozrikidis 1989a, figure 4). Figure 7 presents the comparison for the
magnitude and phase of the hydrodynamic resistance where the dashed curves are
the analytical predictions and the symbols are numerically calculated results (the
variables a and b that Pozrikidis uses to denote the radii of the major and minor axes
of the ellipsoid are related to our ε by ε = (a/b)2/3 − 1.) For nearly spherical shapes,
i.e. for small ε, the analytical results are in good agreement with the numerical results
for all λ.

4.3. Arbitrary oscillatory motions of a nearly spherical particle

We now consider a nearly spherical particle in purely rotational oscillation about an
axis through its centre of mass. The details of the analysis follow § 4.2 closely. Again
we start with equations (22), but now use the boundary conditions u|S = Ωo ∧ r and

û|Ŝ = Ω̂o ∧ r. Following the steps outlined earlier, we combine equations (22a) and
(22b) then integrate the resultant equation over the fluid volume outside the sphere.
But now, due to the fact that

r|S = r|Ŝ + εfr|Ŝ + O(ε2), (36)

the integrals over V− and V+ no longer vanish. Some manipulation shows∫
V−
∇ · (T · û)dV −

∫
V+

∇ · (T · û)dV = iλ2ΩoΩ̂o :

∫
Ŝ

εfnndS (37)

so the reciprocal relation has the form∫
S

n · T · ûdS =

∫
Ŝ

n · T̂ · udS + iλ2ΩoΩ̂o :

∫
Ŝ

εfnndS. (38)

Next we approximate u|Ŝ and û|S as

û|S = Ω̂o ∧ r|r=1 + εf
∂û

∂r
over S−i , (39a)

= Ω̂o ∧ r|r=1 over S+
i , (39b)

u|Ŝ = Ωo ∧ r|r=1 over Ŝ−i , (39c)

= Ωo ∧ r|r=1 − εf
∂u(0)

∂r
over Ŝ+

i , (39d)

where again u(0) is the zeroth-order velocity field for u and corresponds to the velocity
field due to a sphere in rotational oscillation with angular velocity Ωo. Substituting
(39) into (38), we obtain an expression for the hydrodynamic torque on the particle
in terms of a sum of surface integrals. We then approximate T in the O(ε) surface
integrals by T (0) and use the following relations, derived for a sphere rotating with
angular velocity Re(Ω∗eit):

n · T ∗|Ŝ = −
(

iλ2

eiπ/4λ+ 1
+ 3

)
Ω∗ ∧ n, (40a)
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∂u∗

∂r

∣∣∣∣
Ŝ

= −
(

iλ2

eiπ/4λ+ 1
+ 2

)
Ω∗ ∧ n. (40b)

Substituting the above expressions for T , T̂ (0), ∂û/∂r and ∂u(0)/∂r in (38) and using the

formula for hydrodynamic torque L̂ on a sphere in oscillatory rotation

L̂ = −8π

3

(
iλ2

eiπ/4λ+ 1
+ 3

)
Ω̂o, (41)

we find the hydrodynamic torque Re(Leit) on a nearly spherical particle

L(λ) =

[
−8π

3

(
iλ2

eiπ/4λ+ 1
+ 3

)
I + ε

[(
iλ2

eiπ/4λ+ 1
+ 3

)2

− iλ2

]∫
Ŝ

fnn dS

]
·Ωo (42)

which defines D(λ). The integral involving the shape function f is the same as the
integral that appears in equation (35) and so, in fact, no extra work is needed to
construct D once A is determined.

We note that in the high-frequency limit equation (42) does not have an O(λ2)
contribution, which must exist if the rotating object displaces surrounding fluid. Thus,
we conclude that the added mass resistance experienced by a rotating near sphere
is at most an O(ε2) term. Potential flow solutions (Lamb 1932) for rotation of an
ellipsoid confirm this result and show that indeed the added mass resistance is O(ε2λ2).
Therefore, at the next order the approximate result (42) must have a correction that
is O(ε2λ2). For a body that displaces fluid as it rotates, it is thus necessary to
require ελ � 1 (in addition to ε � 1) for (42) to be used. Equation (42) has been
compared with recent numerical calculations of the hydrodynamic torque experienced
by a prolate or an oblate spheroid in axisymmetric rotational oscillation (Tekasakul,
Tompson & Loyalka 1998) for the cases ε = 0.2 and ε = 0.1. The numerical results
and the analytic expression show the expected agreement.

Finally, we discuss the coupling of translational and rotational oscillations. We
shall find that, provided the axis of rotation goes through the centre of mass, the
coupling between translational and rotational oscillations is an O(ε2) effect. This is
consistent with results derived in the Stokes flow limit.

Again, we follow the reciprocal theorem approach. Suppose the nearly spherical
particle is translating with velocity Re(U oe

it). To consider the hydrodynamic torque
exerted on the nearly spherical particle due to its translational oscillation, we compare
the flow problem with that of an equivalent-volume sphere in oscillatory rotation with
angular velocity Re(Ω̂oe

it). The steps are similar to those used above with the difference
being that the integrals over V− and V+ in (25) now take the form∫

V−
∇ · (T · û)dV +

∫
V+

∇ · (T · û)dV = iλ2Ωo ∧
∫
Ŝ

nεfdS ·U o, (43)

while corrections to O(1) approximate velocities on the sphere and particle surfaces
also yield an integral of the form above. Taken together, the final form for the induced
hydrodynamic torque Re(Leit) is

L = −9ε

2

(
1 + eiπ/4λ+

iλ2

9

)∫
Ŝ

nfdS ∧U o. (44)

Recall that fixing the origin at the centre of mass requires
∫
Ŝ
fnds = 0, so therefore

the O(ε) coupling contribution vanishes. Note that (44) should not be taken as an
estimate of the coupling experienced by a nearly spherical particle which is rotated
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about an axis that does not go through its centre of mass, since in obtaining (44) we
have compared the velocity field due to a nearly spherical particle to that of a sphere
rotated about its centre of mass. The proper comparison would start with a sphere
which is rotated about an equally off-centre axis.

4.4. Time-dependent motion of a nearly spherical body

Time-dependent motion of a particle can be studied in a standard fashion by taking a
Laplace transform with respect to time of (2) and setting λ2 = 1, which corresponds to
scaling time with the viscous diffusion scale a2/ν (e.g. Lawrence & Weinbaum 1986).
We shall denote the Laplace transform variable as s. The solution of the transformed
equation is now equivalent to (3) with i → s. Therefore, given analytical expressions
for F (λ) and L(λ), for the force and torque experienced by a body in oscillatory
motion (§§ 4.2–4.4), it is only necessary to perform an inverse Laplace transform to
formally obtain the time-dependent force and torque on a particle.

Before presenting the explicit formulae, we recall that for the particle motion
problems considered here the unsteady Stokes equation is approximate with an O(R)
error (Lovalenti & Brady 1993). Hence, for R � 1 the Laplace transform solution is
actually an incorrect approximation to the Navier-Stokes equations for |s| < R, which
implies that the long-time behavior of the hydrodynamic resistance will deviate from
that predicted according to an unsteady Stokes flow analysis. A thorough discussion
of this difficult topic is given by Lovalenti & Brady (1993).

Here we confine ourselves to obtaining the time-dependent hydrodynamic resistance
for a near sphere based on the unsteady Stokes flow approximation. The particle is
assumed to translate with velocity U (t) and the detailed shape is given by r =
1 + εf(θ, φ). The force then follows by taking the inverse Laplace transform of the
appropriately modified (λ = 1, i→ s) equation (35):

−F (t)

6π
= (I − εH1) ·U + (I − 2εH1) ·

∫ t

0

dU

dτ

dτ

(π(t− τ))1/2
+ [ 1

9
I − εH1] ·

dU

dt
(45)

where H1 is given by

H1 =
3

8π

∫
Ŝ

fnn dS. (46)

The time-dependencies in (45) correspond to the instantaneous Stokes force, the
Basset history term and the added mass and (45) explicitly accounts for small,
arbitrary changes from a spherical shape. The additional memory term first noted by
Lawrence & Weinbaum (1986) for nearly spherical, spheroidal particles is an O(ε2)
effect.

For a nearly spherical body experiencing a time-dependent rotation, Ω(t), we may
also use these Laplace transform ideas. However, the O(ε) formula (42) for the torque
on a near sphere fails to capture the added mass resistance at high frequencies
(an O(ε2) effect), and therefore we can only obtain the time-dependent torque for
axisymmetric rotations. In this case, we find that the time-dependent torque is (the
inverse Laplace transform utilizes results in Oberhettinger & Badii 1973)

−L(t)

8π
= (I − εH1) ·Ω(t) +

1

3

∫ t

0

dΩ

dτ

[
1

(π(t− τ))1/2
− et−τerfc((t− τ)1/2)

]
dτ

−1
3
εH1 ·

∫ t

0

dΩ

dτ

[
4

(π(t− τ))1/2
− (5− 2(t− τ))et−τerfc((t− τ)1/2)− 2

(
t− τ
π

)1/2
]

dτ.

(47)
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At O(ε) the torque L(t) on a nearly spherical object has additional memory terms
as compared to the case of a rotating sphere (Feuillebois & Lasek 1978; see also
Gatignol 1983). These additional terms, in particular the O(ε/(t− τ)1/2) contribution,
represent a slightly stronger emphasis on recent history than for the case of a rotating
sphere. Finally we note that the form of the time-dependent force and torque have
the general form predicted by Gavze (1990).

5. Composite expansion formulae for hydrodynamic resistance on a disk in
unsteady Stokes flow

With the understanding we have developed for non-spherical shapes, we now
return briefly to the circular disk shapes discussed in §§ 2–3. Lawrence & Weinbaum
demonstrated that the composite formula (18) worked well for aspect ratios 0.1 to
10. Here we test (18) for the limiting case of a circular disk. Our results indicate that
(18), and a similar formula for rotation, work tolerably well for, respectively, edgewise
oscillations and in-plane rotational oscillations, but not for broadside oscillations and
out-of-plane rotational oscillations.

In particular, for a translating disk the force is given by Re(µUaF eiωt). Following
Lawrence & Weinbaum (1988), F for edgewise oscillation has the form

F = −32

3

[
1 +

3π

16
eiπ/4λ+

(
16

9π
− 3π

16

)
eiπ/4λ

1 + eiπ/4λ

]
U . (48)

Note that the coefficient of the third term is very small (16/9π−3π/16 ≈ −0.023) and
so for all practical purposes the first two terms of either the low- or high-frequency
expansions provide an excellent approximation for all frequencies. This result is similar
to a conclusion reached by Davis (1993a).

We next turn to in-plane rotational oscillations. Motivated by Lawrence & Wein-
baum’s success combining the low- and high-frequency behaviour into a composite
formula for all frequencies, we constructed an approximate formula for the torque
using as a guide our results for a nearly spherical body in rotational oscillations (see
equation (42) and rearrange the O(ε) coefficients). Thus, we propose that the torque
Re(µΩa3Leiwt) is approximately

L = −32

3

[
1 +

3π

32

iλ2

eiπ/4λ+ 1
+

(
1

5
− 3π

32

)
iλ2

(eiπ/4λ+ 1)2

]
Ω, (49)

where the second term in brackets is the high-frequency limit (table 2) and the
third term is chosen to provide the correct low-frequency limit. Again, note that
the coefficient for the third term ( 1

5
− 3π/32 ≈ −0.095) is small. Comparing with

numerically calculated values, (48) and (49) each have maximum errors of 6% for
10−3 < λ2 < 105, being least accurate for λ ≈ 10.

On the other hand, we attempted similar composite expansion schemes for broad-
side oscillations and out-of-plane rotational oscillations. Using numerically estimated
values of O(λ) corrections at high frequencies, these expansions were found to be less
successful and to have maximum errors of about 35%.

Since the forms of the composite formulae are motivated by results for nearly
spherical bodies, there is no reason a priori to expect them to be accurate for circular
disks. Lawrence & Weinbaum (1988) stated that the formula (18) for translation is
restricted to modest aspect ratios, while Loewenberg’s numerical studies (1993b) of
finite cylinders in arbitrary translational oscillations indicate that (18) is less accurate
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for cylinders of extreme aspect ratios. However, we observed that the formula works
well for edgewise translation of a circular disk.

6. Conclusions
In this paper we have presented a study of translational and rotational oscillatory

motions of disk-shaped and nearly spherical particles. Exact solutions for disk shapes
allowed the investigation of forces and torques as a function of frequency as well as
the evolution of the flow. Although we did not obtain the flow field for the arbitrarily
shaped particles, it is possible, using the reciprocal theorem, to obtain the frequency
dependence of the resistance tensors.

Several extensions of this work seem possible. Motivated by the analogy of the
circular disk shape to shapes representative of valves, gears and levers designed
into microelectromechanical devices, it may be worthwhile to consider changes in
the hydrodynamic resistance for finite Knudsen numbers as well as accounting for
the influence of nearby planar boundaries. Both effects may be studied using the
analytical approach outlined in §2. In addition, steady streaming flows (Batchelor
1967) typically accompany oscillatory boundary motions. These secondary flows arise
owing to nonlinear terms and may be studied by using the solutions to the unsteady
Stokes equations given in this paper.

We thank M. Loewenberg for several helpful conversations regarding oscillatory
Stokes flow, J. M. Rallison for insightful suggestions regarding the resistance of nearly
spherical particles and the referees for their thoughtful comments. Also, we thank the
NSF for support of this research through grant CTS-94-23228 (HAS) and an NSF
graduate research fellowship (W.Z.).

Appendix A. Summary of the analytical solutions for translational and
rotational oscillations of a disk

In this Appendix we present a brief summary of the analysis of broadside and
edgewise translational oscillations and in-plane rotational oscillations of a circular
disk. These solutions complement the solution for out-of-plane oscillations which
was given in § 2.2 and the solution methodology has the same form. The notation
established in § 2.2 is used consistently with u = Re(weit) and p = Re(Qeit) denoting,
respectively, the nondimensional velocity and pressure fields. The solution for edgewise
translational oscillations, developed using dual integral equation ideas, but presented
with a different form of solution, was given by Davis (1993a).

We begin by deducing the angular dependence of the velocity and pressure fields
from the on-disk boundary conditions. In particular, broadside translational oscilla-
tions and in-plane rotational oscillations give rise to axisymmetric flows. Moreover,
an in-plane rotational oscillation gives rise to a purely azimuthal (swirl) velocity
field and a dynamic pressure field that vanishes everywhere. On the other hand, for
edgewise oscillations along the x-axis, the no-slip boundary condition on the disk,
r < 1, z = 0 (expressed in cylindrical coordinates), is w = (cos θ, sin θ, 0). Table 3
summarizes the boundary conditions applied at z = 0 for each mode of motion and
table 4 summarizes the form of solution sought for the velocity and pressure fields.

To construct explicit solutions we take Hankel transforms of the momentum
equations. For edgewise oscillation, we again decouple the momentum equations by
working in terms of vr + vθ, vr− vθ, vz and q while for the other problems it is sufficient
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Motion ∀r r < 1 r > 1

(a) broadside translation vr = 0 vz = 1 q = 0

(b) edgewise translation vz = 0 vr = 1, vθ = −1
∂vr

∂z
=
∂vθ

∂z
= 0

(c) in-plane rotation NA vθ = 1
∂vθ

∂z
= 0

(d) out-of-plane rotation vr = vθ = 0 vz = r sin θ q = 0

Table 3. Boundary conditions for oscillatory motions of a disk.

Motion wr wθ wz Q

(a) broadside translation vr(r, z) 0 vz(r, z) q(r, z)

(b) edgewise translation vr(r, z) cos θ vθ(r, z) sin θ vz(r, z) cos θ q(r, z) cos θ

(c) in-plane rotation 0 vθ(r, z) 0 0

(d) out-of-plane rotation vr(r, z) sin θ vθ(r, z) cos θ vz(r, z) sin θ q(r, z) sin θ

Table 4. Functional form of the velocity and pressure fields.

to work with the original variables. Following the steps outlined in § 2, the solutions
for the different particle motions may be shown to have the form

(i) broadside oscillation:

vr(r, z) =

∫ ∞
0

kB(k)
(
e−kz − e−`z

)
J1(kr) dk, (A 1a)

vz(r, z) =

∫ ∞
0

kB(k)

(
e−kz − k

`
e−`z

)
J0(kr) dk, (A 1b)

q(r, z) = iλ2

∫ ∞
0

B(k)e−kzJ0(kr) dk; (A 1c)

(ii) edgewise oscillation:

vr(r, z) =
1

2

∫ ∞
0

k

[(
D(k)− 2`

k
C(k)

)
e−`z + C(k)e−kz

]
J2(kr) dk

+
1

2

∫ ∞
0

k
[
D(k)e−`z − C(k)e−kz

]
J0(kr) dk, (A 2a)

vθ(r, z) =
1

2

∫ ∞
0

k

[(
D(k)− 2`

k
C(k)

)
e−`z + C(k)e−kz

]
J2(kr) dk

−1

2

∫ ∞
0

k
[
D(k)e−`z − C(k)e−kz

]
J0(kr) dk, (A 2b)

vz(r, z) =

∫ ∞
0

kC(k)(e−kz − e−`z)J1(kr) dk, (A 2c)

q(r, z) = iλ2

∫ ∞
0

C(k)e−kzJ1(kr) dk; (A 2d)

(iii) in-plane rotational oscillation:

vθ(r, z) =

∫ ∞
0

kE(k)J1(kr)e
−`z dk, (A 3a)
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vr(r, z) = vz(r, z) = q(r, z) = 0. (A 3b)

Again, ` = ((k2 + iλ2)1/2) and the positive square root is taken.
The functions B(k), C(k), D(k), and E(k) satisfy dual integral conditions derived

from the on- and off-disk boundary conditions at z = 0:

(i) broadside oscillation:∫ ∞
0

kB(k)

(
1− k

`

)
J0(kr) dk = 1, r < 1, (A 4)∫ ∞

0

B(k)J0(kr) dk = 0, r > 1; (A 5)

(ii) edgewise oscillation:∫ ∞
0

[kD(k) + (k − 2`)C(k)] J2(kr) dk = 0, r < 1, (A 6a)∫ ∞
0

k [D(k)− C(k)] J0(kr) dk = 2, r < 1, (A 6b)∫ ∞
0

[
`2C(k)− k`D(k)

]
J2(kr) dk = 0, r > 1, (A 6c)∫ ∞

0

[
k2C(k)− k`D(k)

]
J0(kr) dk = 0, r > 1; (A 6d)

(iii) in-plane oscillatory rotation:∫ ∞
0

kE(k)J1(kr) dk = r, r < 1, (A 7a)∫ ∞
0

k`E(k)J1(kr) dk = 0, r > 1. (A 7b)

Using Tranter’s method (Tranter 1966), we represent the unknown functions as a
Bessel function series so that the integral equations corresponding to the off-disk
boundary conditions (r > 1, z = 0) are automatically satisfied. Hence, we take

B(k) = k1−β
∞∑
m=0

bmJ2m+β(k), (A 8a)

E(k) =
k−β

`

∞∑
m=0

emJ1+2m+β(k). (A 8b)

For edgewise oscillations, instead of solving for C(k) and D(k) directly, it is convenient
to solve for related functions F(k) and G(k) where

C(k) = − ik

2λ2
[F(k)− G(k)] , (A 9a)

D(k) =
i

2λ2`

[
`2G(k)− k2F(k)

]
, (A 9b)

and F(k) and G(k) have the form

F(k) = k−α
∞∑
m=0

fmJ2+2m+α(k), (A 10a)
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G(k) = k−β
∞∑
m=0

gmJ2m+β(k). (A 10b)

We set β = α = 1/2 to capture the stress singularity at the disk edge.
Finally, constants {bm}, {em}, {fm} and {gm} in the Bessel function series are deter-

mined by solving a linear system of equations derived from the integral equations
corresponding to the on-disk boundary conditions (r < 1, z = 0). The linear sys-
tems are given below. After the coefficients {bm}, {em}, {fm}, {gm} are determined, the
detailed fluid velocity fields about the circular disk are known:

(i) broadside oscillation:

∞∑
m=0

bm

∫ ∞
0

k2−2β

(
1− k

`

)
J2m+β(k)J2n+β(k) dk =

δ0n

2βΓ (1 + β)
, n = 0, 1, · · · , (A 11)

(ii) edgewise oscillation:

∞∑
m=0

gmRmn + fmSmn =
2 δ0n

2αΓ (α+ 2)
, n = 0, 1, · · · , (A 12a)

∞∑
m=0

gmR̂mn + fmŜmn = 0, n = 0, 1, · · · , (A 12b)

with Rmn, Smn, R̂mn, and Ŝmn given by

Rmn =

∫ ∞
0

k1−2α

(
1− k

`

)
J2n+α(k)J2m+α(k) dk, (A 13a)

Smn =
i

λ2

∫ ∞
0

k2−(α+β)

(
1− k

`

)
J2n+α(k)J2+2m+β(k) dk, (A 13b)

R̂mn =
i

λ2

∫ ∞
0

k2−(α+β)

(
1− k

`

)
J2+2n+β(k)J2m+α(k) dk, (A 13c)

Ŝmn =

∫ ∞
0

k1−2β

(
1− k

`

)
J2+2n+β(k)J2+2m+β(k) dk; (A 13d)

(iii) in-plane rotational oscillation:

∞∑
m=0

em

∫ ∞
0

k1−2β

`
J1+2m+β(k)J1+2n+β(k) dk =

δ0n

2βΓ (2 + β)
, n = 0, 1, · · · . (A 14)

The non-dimensional hydrodynamic force and torque exerted by the fluid on the
disk are calculated, respectively, by integrating the surface stress distribution and
its first moment, over both sides of the disk. Again, by choosing β = 1/2 only the
coefficient of the first term in the Bessel series (A 8) or (A 10) is required to obtain
the hydrodynamic resistance. We find
(i) broadside oscillation:

F = −4λ2(2π)1/2ib0ez; (A 15)

(ii) edgewise oscillation:

F = −2(2π)1/2ig0ex; (A 16)

(iii) in-plane rotation:

L = −4(2π)1/2

3
ie0ez. (A 17)
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The calculated hydrodynamic force and torque on the oscillating disk are presented
in § 3.1.

Appendix B. Torque for low-frequency rotational oscillations
Asymptotic expressions are available for the hydrodynamic resistance for the low-

frequency broadside and edgewise oscillatory translations of a thin disk in unsteady
Stokes flow and for in-plane low-frequency rotations (Kanwal 1970; Williams 1966).
To the best of our knowledge, the corresponding expression for the torque has not
been given for low-frequency out-of-plane rotations so we derive the result in this
Appendix.

Consider a body oscillating with angular velocity Ω cosωt in a viscous fluid. We
use the same non-dimensionalization as described in the text and so wish to solve (3)
subject to the boundary conditions w|Sp = Ω∧ r, and at infinity (|w|, Q)→ 0. We shall
use the reciprocal theorem and so introduce the corresponding Stokes flow velocity
and pressure fields, ŵ and Q̂, which satisfy

0 = −∇Q̂+ ∇2ŵ = ∇ · T̂ and ∇ · ŵ = 0, (B 1)

where T̂ is the usual stress tensor, and ŵ and Q̂ satisfy boundary conditions
ŵ|Sp = Ω ∧ r and (ŵ, Q̂)→ 0 as |r| → ∞. Then, developing the reciprocal theorem for
equations (3) and (B 1) leads to

iλ2w · ŵ = ∇ · (T · ŵ)− ∇ · (T̂ · w). (B 2)

Integrating over the fluid volume, applying the divergence theorem, and using the
boundary conditions on the particle surface, we obtain

L ·Ω = L̂ ·Ω− iλ2

∫
V

w · ŵ dV , (B 3)

where L denotes the torque experienced by the body undergoing oscillatory rotation,
L̂ denotes the torque experienced by the rotating body in Stokes flow, and V is
the fluid volume surrounding the particle. Now, for λ2 � 1, a representation for w
can be constructed using the method of matched asymptotic expansions. The ‘inner
expansion’ in λ, with ŵ being the zeroth-order solution, is

w = ŵ + λw(1) + λ2w(2) + · · · (B 4)

and an outer solution is needed on length scales |r| > O(1/λ). The field w(1) corre-
sponds to a correction to the Stokes velocity field produced by a far-field flow where
the local acceleration (iλ2w) is important. In general, a rotating non-spherical body
at low Reynolds numbers is characterized by combination of a rotlet and stresslet in
the far field (Hocquart & Hinch 1983). This far-field flow has w = O(λ2) which cor-
responds to an O(λ2) correction to the inner velocity field. Hence w(1) = 0 everywhere
for a body experiencing low-frequency oscillatory rotations and the leading-order
correction is O(λ2).

We may then substitute ŵ for w in the integral (B 3) to arrive at a formula for the
torque on a body in low-frequency oscillatory rotation:

L ·Ω = L̂ ·Ω− iλ2

∫
V

ŵ · ŵ dV + O(λ3). (B 5)

For out-of-plane rotations of a disk, the corresponding Stokes velocity fields are given
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by Tanzosh & Stone (1996). In particular, owing to symmetry it is only necessary to
consider z > 0 for which

ŵr =
2 cos θ

π

∫ ∞
0

(
k−1 sin k − cos k

)
ze−kz [J2(kr)− J0(kr)] dk, (B 6a)

ŵθ =
2 sin θ

π

∫ ∞
0

(
k−1 sin k − cos k

)
ze−kz [J2(kr) + J0(kr)] dk, (B 6b)

ŵz =
4 cos θ

π

∫ ∞
0

k−1
(
k−1 sin k − cos k

)
(1 + zk)e−zkJ1(kr)dk. (B 6c)

Substituting the expressions above into equation (B 5), and interchanging order of
integration leads to

L = −32Ω

3

(
1 +

3

10
iλ2 + O(λ3)

)
(B 7)

where Re{µa3ΩLeiωt} is the actual torque experienced by the oscillating disk.
A similar calculation may be used to determine the low-frequency correction for

in-plane rotation of a disk, which was previously given by Kanwal (1970). We note
that there is a sign error in Kanwal’s expression since the first correction must be
positive by (B 5) and the corresponding torque is given in table 1, entry c.
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